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We propose a controlled experiment to clarify the role of “population switching,” i.e., filling of one level at
the expense of another one, in causing phase lapses of the amplitude for electron transmission through nano-
scale devices. Such lapses are generically observed in valleys between adjacent Coulomb-blockade peaks. The
experiment involves two quantum dots embedded in the same arm of an Aharonov-Bohm interferometer. By
varying independently their gate voltages, one can controllably induce population switchings in consecutive
Coulomb-blockade valleys, and test whether the expected phase lapses follow.
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I. INTRODUCTION

In experiments on the phase � of the transmission ampli-
tude T through a quantum dot �QD�, the following striking
pattern has been observed:1–3 As a function of gate voltage
Vg, � increases �as expected� by �� over the width of a
Coulomb-blockade peak for the conductance but then �unex-
pectedly� displays a sharp phase lapse �PL� of �−� in the
adjacent Coulomb-blockade valley. The PL is found to occur
in every conductance valley between two Coulomb-blockade
peaks. No general consensus as to the mechanism underlying
the PL has been reached yet in spite of determined theoreti-
cal efforts �see review 4�. Here we propose a controlled ex-
perimental test to confirm or rule out one of the key mecha-
nisms �“population switching”� considered in the literature.
The present work consists of the first proposed setup in
which one can tune the system in and out of the occurrence
of a sequence of population switchings, and test whether this
is accompanied by the appearance and disappearance of cor-
related PLs �the latter was not facilitated in the original setup
of Refs. 1 and 2�.

The need for some mechanism to induce PLs is seen as
follows. We consider transmission through a QD that sup-
ports two orbital5 levels i=1,2. The levels are coupled to
single-channel leads ��=R ,L with R and L for right and left,
respectively� by real7 tunneling matrix elements ti,�. Depend-
ing on the value of s��i,�ti,�, we distinguish7 two cases: s
�0 and s�0. PL is a manifestation of the vanishing of T.
We consider first the case of no electron-electron interaction
at zero temperature. By the Friedel sum rule,8 for symmetric
dot-lead coupling, �i.e., �t1L�= �t1R� , �t2L�= �t2R��, T is given by
exp�i��n1+n2��sin���n1�n2��, where n1,2 are the popula-
tions of levels 1 and 2, respectively, and the sign is that of s.
In the valley between two Coulomb-blockade peaks the
lower �upper� level 1 �2� is almost full �empty�, and for s
�0 T vanishes there. For s�0 a PL occurs for n1=n2 and
that condition is not met in the valley. These statements,
concerning both s�0 and s�0, are expected, by continuity,
to hold even in the presence of not too large deviations from
left-right symmetry. In reality we expect the signs of the ti�
to be random. Then, correlated sequences of PLs are not
expected, cf. measurements on uncorrelated mesoscopic

QDs.2 One faces a similar dilemma for interacting electrons
since the Friedel sum rule is also valid9 in that case. Thus
explaining the occurrence of correlated sequences of PLs im-
plies finding a mechanism by which a PL occurs for s�0.

Population switching provides one such mechanism. It re-
quires the populations n1�Vg� and n2�Vg� of the two levels to
become equal, n1�Vg

�0��=n2�Vg
�0��, at some value Vg

�0� of Vg in
the Coulomb-blockade valley and to switch �n2�Vg�
�n1�Vg� for Vg�Vg

�0�� as Vg is increased further.10 The case
s�0 is symmetric in n1 and n2: PLs appear then irrespective
of population switching, while for s�0 a population switch-
ing would produce a PL. Population switching has been con-
sidered in two somewhat different scenarios. The first, dis-
played and explained in Fig. 1, requires two sets of energy
levels which respond differently to Vg, a set of “flat” and a
set of “steep” levels with small and large slopes, respec-
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FIG. 1. �Color online� Scenario I �after Refs. 12 and 13�: The
renormalized �Hartree� energies of the “flat” and “steep” levels are
schematically shown as functions of the applied gate voltage Vg. In
our picture, population switching is discontinuous. As Vg increases,
a flat level becomes populated at Vg=A. That increases the energy
of the empty steep levels. At Vg=B, the lower steep level crosses
the Fermi surface and becomes occupied, causing a depletion and a
rise in energy of the flat level, and population switching. At Vg

=C, the flat level is filled again, and the process repeats itself with
the next steep level. We thus obtain a sequence of population
switchings.
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tively, the occupancy of which depends nonmonotonically on
Vg.12,13 In the second scenario �described in Fig. 2� a set of
energy levels with identical slopes contains both broad and
narrow levels.14 In both scenarios, the interplay between tun-
neling and charging gives rise to population switching. These
scenarios have been investigated within a mean-field
approximation,11,15 perturbative calculations,16 the numerical
renormalization-group approach for scenario II,17 the
density-matrix renormalization-group approach,18 and the
functional renormalization-group �FRG� approach.19 Either
scenario implies special requirements �e.g., commensurabil-
ity of the spacings of the flat set and the steep set in scenario
I or the presence of a generic ultrabroad level in scenario II�.

In this paper we suggest a double-dot geometry to experi-
mentally test the relation between PLs and population
switchings in a controllable fashion. The configuration is de-
tailed in Sec. II. We then describe our numerical method and
present some typical results for the outcome of such an ex-
periment in Sec. III. Our findings are summarized in Sec. IV.

II. PROPOSED SETUP

Our proposed experimental setup is schematically shown
in Fig. 3. By varying separately the gate voltages applied to
each dot, and by adjusting the strengths of the dot-lead cou-
plings, one can tune the levels in one dot independently of
those in the other. This makes it possible to realize both the
first and the second scenario mentioned above, as one can
separately control both the gate-voltage coupling �scenario I�
and the widths �scenario II� of the levels in the two QDs.
Thus, the system can be tuned in and out of the conditions
for observing a correlated sequence of PLs. In the sequel we
focus attention on scenario I. The two sets of levels would be
those in QD1 and in QD2, respectively. With the help of our

setup, it is possible to test experimentally the idea that PLs
for s�0 come hand in hand with population switching.

To investigate the expected properties of our setup theo-
retically, we restrict ourselves to spin-polarized electrons and
neglect both tunneling between the two dots, and the
electron-electron interaction in the leads. The Hamiltonian
consists of three parts,

Ĥ = ĤD + ĤL + ĤT. �1�

Here ĤD is the Hamiltonian for the dots,

ĤD = 	
i=1,2;j

�ijâij
† âij + 	

i=1,2

Ui

2 	
j�j�

n̂ijn̂ij� + U12	
j;j�

n̂1jn̂2j�,

�2�

ĤL is the Hamiltonian for the leads,

ĤL = 	
�=L,R;k

��,kĉ�,k
† ĉ�,k, �3�

and the dot-lead coupling is given by

ĤT = 	
i=1,2;j

�=L,R;k

�t�,k
ij âij

† ĉ�,k + H.c.� , �4�

while âij �ĉ�,k� are the Fermi operators of the jth level of the
ith dot �kth mode of the �th lead, respectively�, n̂ij are the
number operators, and �ij =�ij

�0�−eVg,i are the single-particle
energies modified by the gate voltage. The intradot and in-
terdot charging energies are denoted by Ui and U12, respec-
tively. We assume a constant density of states in the leads
with a band width that exceeds all other energy scales. The
real tunneling matrix elements t�,k

ij are taken to be indepen-
dent of k.

For scenario I it would be best to make QD1 so small that
only one of its levels plays an active role and functions as the
flat level in Fig. 1. The levels in QD2 are steep and must be
well separated to avoid population switching among
them.11,14,19,21 The gate voltages on both QDs should be var-
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FIG. 2. �Color online� Scenario II �after Ref. 14�: Renormalized
level energies are schematically plotted as functions of the applied
gate voltage Vg. Population switching are shown as discontinuous
for simplicity. All levels have the same gate-voltage dependence;
however, one of them is significantly broader and overlaps with one
or more narrow levels. As the gate voltage is increased, the broad
level is first �partially� filled �point A�, pushing up the energy of the
narrow one. At point B, however, it becomes favorable to populate
the narrow level while depleting the broad one, which leads to
population switching. As the gate voltage is further increased, the
broad level begins to fill up again, and the process may repeat itself
with another narrow level �not shown�.
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FIG. 3. Schematic view of the proposed setup. Two quantum
dots �QD1 and QD2� are embedded into the same arm of an
Aharonov-Bohm interferometer and are connected in parallel to a
left �L� and a right �R� lead. Arrows denote possible tunneling pro-
cesses. A quantum point contact �QPC� probes the changes in popu-
lation of QD1. Our analysis addresses the physical processes within
the dotted box.

GOLDSTEIN et al. PHYSICAL REVIEW B 79, 125307 �2009�

125307-2



ied simultaneously but not at the same pace so as to induce
level crossings. For the gate voltages we write Vg,1=�Vg,2
+V0, where 0	�	1. V0 is chosen so that the flat level gets
filled before it encounters the first steep level. To estimate �
we observe that the change in Vg,2 between adjacent cross-
ings of two steep levels with the Fermi surface is roughly
given by U2+
2, 
2 being the mean level spacing in QD2.
As Vg,2 is changed, the flat level must not sink too deeply
below the Fermi surface so that it can eventually get depleted
due to the interdot interaction of strength U12. That implies
that as Vg,2 changes by U2+
2, Vg,1 should change roughly
by U12 so that ��U12 / �U2+
2�. Too large a value of � will
take the flat level too far down to be depopulated while for
too small a value it will not repopulate. In both these cases,
PLs should occur at random, and the absence of a correlated
sequence of PLs should be akin to the mesoscopic fluctua-
tions of PLs observed in Ref. 2, while for intermediate val-
ues of � we expect to see a sequence of consecutive PLs.
Tuning of � to a range which implies population switching
�and consequently the occurrence of PLs� should be experi-
mentally possible with the aid of the QPC �Fig. 3� �the latter
is employed to detect the occurrence of population switch-
ing�.

III. TYPICAL RESULTS

Let us now turn to present the results expected from such
an experiment. In the calculations we use the FRG which has
recently been applied to similar systems.19,20 Earlier calcula-
tions using that method have resulted in accuracy compa-
rable to NRG, at least for zero temperature and when not
more than two levels are close to each other.19 These condi-
tions are met in our case. FRG is based on a functional-
integral formulation with an infrared cutoff. The cutoff de-
pendence of the vertex functions is given in terms of an exact
hierarchy of coupled nonlinear differential RG equations. For
very large values of the cutoff all the modes of the system
are excluded, and the vertex functions are given by the bare
parameters of the Hamiltonian. In principle, the exact vertex
functions could be found by integrating the FRG equations
from that point to the limit where the cutoff tends to zero �in
which case all the modes of the system are included�. How-
ever, to make the computation feasible, some truncation
scheme must be applied. Usually one neglects all vertices not
present within the bare Hamiltonian, i.e., three-particle or
higher vertex functions, as well as the energy dependence of
the one- and two-particle vertex functions.19,20 The resulting
set of equations can then be solved numerically. From the
�approximate� single-particle vertex functions the dots’
single-particle Green’s functions, the level occupations, the
linear conductance, and the transmission phase are readily
derived.

In Fig. 4 we give the results of a calculation on a typical
set of parameters. In accordance with the discussion in Sec.
II, we observe that a PL is obtained in every Coulomb-
blockade valley only in the central panel where scenario I
fully applies. Details of the population switching that occurs
in the central panel near Vg,2 /U2=2.83 in a conductance val-
ley with s�0 are shown in Fig. 5. We observe that the popu-

lation switching is continuous, albeit very steep. The scale of
the switching is given by an exponentially small20 orbital
Kondo temperature21


Vg,2 
 TK =
�U12��1+�2�

� exp��E0�U12+�0�
2U12��1−�2� ln��1

�2
��

�this expression acquires a more complicated form when
right-left symmetry is not maintained�. Here �1,2 are the
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FIG. 4. �Color online� The upper part of each panel shows the
population of the flat level �n1,1� and of three steep ones �n2,1, n2,2,
and n2,3�; the lower part shows the dimensionless conductance and
the transmission phase divided by 2�, all versus the gate voltage
Vg,2 on QD2. The level energies �in units of U2� are 0, 0.3, 0.52, and
0.7, respectively, while their widths due to the coupling to the left
�right� lead are 0.02 �0.03�, 0.018 �0.01�, 0.035 �0.016�, 0.039
�0.021�. All the tunneling matrix elements are positive, except tR

2,2

and tR
2,3. U12=0.6U2. The upper, central, and lower panel corre-

spond to �=0.3, 0.5 �=U12 / �U2+
2��, and 0.7, respectively.

TRANSMISSION PHASE OF QUANTUM DOTS: TESTING… PHYSICAL REVIEW B 79, 125307 �2009�

125307-3



widths of the two levels that switch population, and E0 is the
average of their positions at the point of population switch-
ing. As expected, a PL occurs in the vicinity of the point of
level crossing. It is accompanied by two very narrow con-
ductance peaks. The appearance of these sharp “correlation-
induced resonances”20 is easily explained in the case of left-
right symmetry. Then, according to the Friedel sum rule, the
conductance is given by g= �e2 /h�sin2���n1−n2�� for s�0,
and is maximal when �n1−n2�=1 /2. Since at the population
crossing point n1=n2 while far from it either n1=1 and n2
=0 or n1=0 and n2=1, conductance peaks should occur on
both sides of the population crossing point. By continuity,
the argument probably applies at least qualitatively also for
nonsymmetric cases if the asymmetry is not too large, as our
numerical data indicates, although we have no analytic deri-

vation in this case. The width of the peaks is again given by
the orbital Kondo temperature. We expect the peaks to dis-
appear for temperatures higher than that scale.19 Similar
sharp peaks are seen at the PL near Vg,2 /U2=1.86 in the
central panel of Fig. 4 but not at the PL near Vg,2 /U2=0.77
because there we have s�0.

IV. CONCLUSIONS

In summary, we propose an experiment to test the role
played by population switching for phase lapses �PLs� of the
transmission amplitude through a nanoscale device. In a sys-
tem of two coupled quantum dots with gate voltages Vg,1 and
Vg,2, we expect sequences of PLs to occur in consecutive
conductance valleys only for intermediate values of �
= �Vg,1−V0� /Vg,2. The associated population switching can
be measured by coupling QD1 to a quantum point contact.
Further structures due to correlation-induced resonances
should emerge below the Kondo temperature and provide an
even more detailed test of population switching. While the
present analysis has been focused on scenario I, very similar
phenomena are expected for scenario II.
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FIG. 5. �Color online� Details of one of the PLs due to popula-
tion switching �s�0� in the central panel of Fig. 4.
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